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The problem of propagation of an initially plane shock wave along a fluid interface 
is solved numerically, using the method of characteristics in conjunction with Whitham’s 
technique. The results are limited to ditferences in shock velocity in the two fluid media 
of about 30 % +. Greater degrees of shock diffraction will be accompanied by wave 
reflexions which have not been considered in Whitham’s technique. The diffracted shock 
is found to be remarkably uniform, except in the vicinity of the free surface and the 
undisturbed shock, where it undergoes large changes in curvature. 

I. INTRODUCTION 

As a shock wave propagates through a general nonuniform medium in which 
the local sound speed varies with position, the shock will be diffracted, and its 
shape will become distorted. This is due to the fact that the varying fluid properties 
ahead of the shock front will cause some portions of the shock to change their 
velocity relative to adjacent segments. When a shock wave is diffracted, abrupt 
changes in shock shape are often accompanied by reflected waves which are neces- 
sary to assure that the general conservation relations remain satisfied across the 
distorted shock front. 

The study of shock wave propagation in nonuniform media finds particularly 
important application in the oceans and upper atmospheres. Such shock or blast 
waves may be formed by vehicles traveling supersonically, or as a direct conse- 
quence of strong explosions. 

In this work, we consider the problem of the diffraction of an initially plane 
normal shock front as it sweeps along a free interface separating two half-planes 
containing different homogeneous fluids at rest (Fig. 1.1). 

Explicitly, we study the situation of a plane step-shock of Mach number M,, 

* Presented at the Section on Numerical Methods in Gasdynamics of the Second International 
Colloquium on Gasdynamics of Explosions and Reacting Systems in Novosibii, USSR, 
August 19,1969. 

t Note added in proof This restriction has since been removed by a generalized treatment at the 
interface. 
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Fki. 1.1. Inmaction of a plane shock front with a fra surfac8 separatiw two diEbent tbids, 
each of rrmiinfinite extent. 

which initially travels parallel to the axis x = 0 in the direction of increasing values 
of x. At time t = 0, the shock crosses the free interface (y = 0) separating a 
homogeneous fluid in the upper half-plane (x > 0, y > 0) from a different homo- 
geneous fluid in the lower half-plane (x > 0, y < 0). The subsequent motion of the 
shock front is determined as it propagates through the two fluids. The interaction 
obtained depends on the initial speed of the shock relative to the sound speeds 
in each of the two media. The free interface will be displaced as a result of the 
varying pressure along the back surf= of the shock front. The pressure and normal 
fluid velocity must be represented as continuous functions across this displaced 
interface, the true position of which is not known a priori. 

The motion of the shock itself may be approximated by an extension of a method 
originally due to Chisneh [4] and reinterpreted by Whitham [18], in which distur- 
bances to the motion of the shock are considered as constituting a wave motion 
on the shock itself. A curvilinear coordinate system is formed of a network con- 
sisting of successive shock wave positions and their orthogonal trajectories (my@. 
In this way, the flow field is divided up into a series of adjacent ray-tubes in which 
the cross-sectional area changes slowly with distance along the tube. 
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The simplifying assumption implied in the technique of Whitham is that the 
shock Mach number is a function of local cross-sectional area only. Thus, the 
effects of reflected waves behind the shock front which may in turn be m-reflected 
from the contact discontinuity and overtake the shock are neglected in this method. 
A relation, first developed by Chester ([2], [3]), is used to relate changes in shock 
Mach number to local changes in cross-sectional area of the ray tube. 

The modified method of Whitham has been applied to an investigation of shock 
bifurcation in a heated layer on a flat plate by G. P. Talbot [7] in an effort to 
predict the time for formation of a second shock. The application of the technique 
to shock interaction with free surfaces is new. Additional complications arise in 
this case in the treatment of the boundary conditions at the distorted free surface 
which is no longer a ray as it would be were it a rigid surface. 

The initial interaction of a uniform shock front with the two fluid domain is 
considered in Section II. The results of this study yield the strength of the trans- 
mitted shock fronts, whose subsequent diffraction and propagation are studied in 
the remainder of the work. Section 111 describes the mathematical formulation in 
terms of the method of Chisnell-Whitham. The numerical schemes adopted in the 
solution by the method of characteristics are explained in Section IV followed by 
the results and discussion and concluding remarks of Section V and VI. 

Results have been calculated for a number of cases, but only one representative 
case, in which the shock speeds in the upper and lower media differ by 26 %, is 
reported. There is evidence to believe that the degree of difference in shock speeds 
to which the technique of Whitham can be applied is limited, very likely due to an 
increasing contribution of reflections behind the shock front at the free surface. 

II. INITIAL INTERACTION BETWEEN THE INCIDENT SHOCK 
AND THE CONTACT SURFACE 

At time t = 0, the initially uniform shock front arrives at the interface separating 
two homogeneous fluids of different densities, and sound speeds (Fig. 1.1). The 
interaction will result in a transmitted shock front and a reflected wave which may 
be either of compression or expansion type. The method of distinguishing, a 
priori, between these two possibilities has been discussed in an excellent review 
article by Pack [13] as well as by Stocker and Butler [16] and by Courant and 
Friedrichs [6]. 

According to Pack, the nature of the reflected wave is governed by the ratio of 
the shock impedances, defined as the product of the equilibrium density and speed 
of the shock wave moving downstream through it. However, the velocity of the 
shock is of course not known a priori, rendering this criterion of little practical 
use. Instead of comparing shock impedances, we can compare the acoustic im- 
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FIG. 2.1. Shock-contact surface interaction giving rise to reflected shock. 

pedances. A shock wave is always reflected from a medium of greater shock im- 
pedance, or less correctly, acoustic impedance. By using the generalized expression 
for acoustic impedance A, a shock or a rarefaction wave will be reflected according 
as Ai < At or Ai > At . It is possible to predict the character of a reflected wave 
of finite strength in this way. 

If a shock wave is reflected; i.e., A, < Ai (see Fig. 2.1) 
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Equation (2.1) contains only one unknown quantity p3(= pa), and this determines 
the strength of the reflected wave as well as the transmitted wave. 

If a rarefaction wave is reflected; i.e., Ai > At (see Fig. 2.2) 

2&, (ri--l)Pyi 
= -- _ Yi - 1 1( ps 1 1 P2 I* 

(2.2) 

Fro. 2.2. Shock-contact surface interaction giving rise to reflected rarefaction. 
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Again, an equation is obtained for ps , determining the strengths of the reflected 
and transmitted waves. 

If the reflected wave is an acoustic wave, then U, = ut and p2 = pa. Both Eqs. 
(2.1) and (2.2) are identically equal to zero: i.e., they will yield the same strength 
of transmitted shock. 

The relations derived above have been obtained in different forms by Paterson 
[14] and by Gubanov [7]. 

With the strengths of the initial transmitted shocks now known from the above 
calculations, the more difficult problem remains of computing the diffraction of 
this shock front as it propagates through the two media. 

III. DIFFRACTION OF THE TRANSMI~ED SHOCK FRONT 

The transmitted shock front will travel at different speeds in the upper and lower 
media as a result of the different sound speeds in these two media. Consequently, 
the initially uniform shock front must bend or diffract in order to adapt to the new 
flow conditions ahead of it. 

The deformed shape of the shock front will be calculated for the general case 
of an incident shock wave of arbitrary strength propagating into two media of 
significantly different properties. Since the positions of the diffracted shock and 
distorted free surface are not known a priori, an analytic solution is not realizable. 

Y 
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FIG. 3.1. Interaction between diffracted wave and shock wave. 

The flow pattern behind the diffracting shock is shown on Figure 3.1 for the case 
in which the shock travels more rapidly in the lower plane, at a particular time 
t,, > 0. The discussion applies, nonetheless, to the general case. 

A discontinuity in shock inclination and shock strength will occur at the free 
surface as a result of the abrupt change in fluid properties. As a result, the pressure 
in the fluid behind the shock at point C will also suffer an abrupt discontinuity. 



420 COLLINS AND Cl-EN 

This will serve to displace the free surface to one side of its initial horizontal 
position, so that the conditions of continuity of pressure and normal velocity are 
again restored. In addition, at the points A and B, a wave will be reflected as a 
result of the rapid change of curvature of the diffracted shock as it rejoins the 
uniform shock. This reflected wave becomes in fact the first carrier of the distur- 
bance created by the free surface into the upper and lower half planes of the fluid. 

If one is interested primarily in the rate of propagation of the shock front and in 
its shape as a function of time, the problem may be reduced to an equivalent two- 
dimensional formulation in terms of distance along the shock and distance along 
rays which form normal trajectories between successive shock positions. The 
method idealizes the flow into a series of adjacent infinitesimal channels, whose 
cross-sectional area changes with distance along the channel. An area-Mach 
number relationship, first developed by Chester, is used which depends upon local 
flow conditions directly behind the shock wave. Thus wave reflexions due to 
interactions of the shock front with downstream contact discontinuities generated 
at earlier times are not accounted for. 

A small area change in the duct will modify the strength of the transmitted shock 
in the following way: 

dA -2M dM 
-= (M2- l)K(M) A (3.1) 

K(M) = 2 - [( 1 + -& ’ ; P2 ) (2~ + 1 + M-71-l (3.2) 

(y- 1)M2+2 pa = 2y442 - (y - 1) * (3.3) 

K(M) is a very slowly varying (monotonic decreasing) function of shock Mach 
number, ranging from 0.5 for weak shocks (y = 1.4) to 0.3941 for strong shocks. 
Chisnell suggests that the above relation could be integrated to provide a relation 
between shock Mach number and cross-sectional area even when the variations 
in duct area are not small. The resulting expression is very complex. If one ignores 
the small variation in K(M), and evaluates this function for a mean value of the 
expected variation of M, then the area-Mach number relationship becomes 
simply 

AK(M2 - 1) = const. (3.4) 

Whitham was able to reinterpret the results of Chisnell in terms of a simple rule. 
The equations of motion governing the fluid are written in characteristic form. 
Then the rule is to apply the characteristic relations to the flow quantities just 
behind the shock front, together with the shock relations. In this way, one deter- 
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mines the motion of the shock wave. The method has demonstrated remarkably 
high accuracy in a wide range of problems. The accuracy of the method will be 
discussed later for this particular problem. 

It is convenient to consider a curvilinear coordinate system consisting of a 
network formed by successive shock wave positions on the one hand, and the 
orthogonal trajectory to successive shock positions on the other. The former are 
denoted in Figure 3.2 as lines of constant or@-axes), and the latter as lines of 

constant /3(s-axes). If the fluid is at rest ahead of the shock front, then fluid par- 
ticles will be propelled forward in the direction of motion of the shock front as 
it sweeps past; that is, the fluid motion relative to a fixed observer, will be directed 
normal to the shock front. The orthogonal rays normal to successive shock 
positions may then be considered as the boundary walls of an inflnitesmal channel. 

The following geometric relationships, which may be derived most generally 
from the condition of the flatness of the geometric space, then follow for the cur- 
vilinear coordinate system of Figure 3.2. 

hf(ae/ap) = aAjaor (3.5) 
akqap = --A(ae/aor), (3.6) 

where 0 is the inclination of the normal to the shock with a fixed direction, M is the 
shock Mach number and A is the cross-sectional area of the elemental channel. 
Using (3.4), the Eqs. (3.5) and (3.6) become 

i ait4 ?E+--= 
A(M) aP 

o 

a0 i aA ah4 --- - 
afl h4 an4 aOr='* ( ) 

(3.7) 

(3.8) 
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In terms of Cartesian coordinates, 

dy= MsinBdol+Acos6d/3 

dx = M cos d dol - A sin 0 d/3. 

(3.9) 
(3.10) 

Along the shock front (x = const) we have 

(3.12) 

The Eqs. (3.7) and (3.8) may be written in characteristic form as 

where 

(3.13) 

(3.14) 

and the prime denotes differentiation with respect to M. 
In this form only derivatives in one direction appear, i.e., along the characteristic 

lines. Equation (3.13) represents waves moving in the direction of increasing and 
decreasing /3 with speed +Z, respectively, where 

(i) on 

and 

(ii) on @ -c -= , doL 
6 - j g = const. 

dp c -= 
dol ’ 

9 + j g = const (3.15) 

(3.16) 

IV. NUMERICAL METHOD OF CHARACTERISTICS 

Consider two intersecting characteristics of opposite families in the cy - p plane 
(See Fig. 4.1). 
We denote by C+ the characteristic with dp/dor = C and by C- the characteristic 
with db/da = -C, where C > 0. With the values oft, x, y, A4 and 19 at points I and 
II, the method of characteristics is used ‘to compute the corresponding values at 
the intersection point III. 
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DATA 
CURVE 

FIG. 4.1. Physical characteristics for the system of equations. 

The characteristics themselves are given by dfl/da = fC, so that, from Eq. (3.9) 
and (3.10) we obtain 

dy = (Msin8fNcosfQdor (4.1) 

whereN= ACor 

dx=(McostI&Nsin@dol (4.2) 

N = [$ (M2 - I)]“‘. 

The compatibility relations (3.13) may be expressed in the form 

de & (dM/N) = 0. (4.3) 

The above Eqs. (4.1), (4.2), and (4.3) constitutes six relations, which together 
with initial data and continuity conditions across the unknown free interface, may 
be resolved by the numerical method of characteristics. 

Derivatives are replaced by finite differences and the following parameters are 
introduced: 

P,-= (Msine- NcosQ*a (4.4) 

P,-= (McOsO+Nsine)sa (4.5) 

P,+=(Msin0+Ncos@.a (4.6) 

P,+=(~c0~e--N~ine)~a. (4.7) 

Using the above parameters given in Eqs. (4.4) to (4.7), Eqs. (4.1), (4.2), and (4.3) 
become 

(i) along C- characteristics: 

YIII - YI = &i- * b - 11) 

XII1 - XI = p,- * or11 - t1) 

enI - e, = - (ikfuI - ~,yiv- 

(4.8) 

(4-9) 

(4.10) 

581/5/3-s 



424 COLLINS AND CHEN 

(ii) along C+ characteristics: 

YIII - YII = h+bI - h3 (4.11) 

XIII - XII = pa+ * @III - hIl (4.12) 

4II - 41 = - WI11 - MIm+ (4.13) 

where suffices +, - refer to positive and negative characteristics C+ (II, III) and 
C- (I, III) respectively, and the bar superscript denotes a mean between end points 
IIandIIIorIandllI. 

It will be necessary to use these mean values particularly in the calculation of the 
surface points. 

4.1. Calcuhtion of Interface Points 

At the free surface the shocks must meet and travel together at the same velocity. 
For if one shock were to outdistance the other, then the pressure behind the faster 
shock would certainly exceed the pressure in front of the slower one. The conditions 
of continuity of pressure and normal-velocity across the free surface could not be 
satisfied, and a secondary wave would have to form to link the upper and lower 
shock fronts. We take this secondary wave as a segment of the di@acted shock 
front itself. 

There is a jump in shock strength and shock inclination across the free surface. 
Hence, one must determine Mm,, and em” I, referring to the values of shock 
Mach number and inclination at’ the surface point III in the upper and lower 
media, respectively (see Fig. 4.2). 

PIG. 4.2. Physical characteristics for the first surface point. 

Surface points will be calculated at equal time intervals. The shock fronts in the 
upper and lower media must, of course, intersect on the undisturbed free surface, 
that is, at ym = 0. 

The calculation of the first surface point requires special treatment since a 
mathematical singularity exists at the free surface at t = 0(x = 0). 

The di5culty arises from the fact that although the two shocks must move 
together along the free surface, the initial conditions supplied by the prelimmary 
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problem, which determined the initial strength of the transmitted shocks, do not 
permit this. 

In fact, the condition required on the velocities of the two shocks at any surface 
point to ensure that the shocks travel together is 

(4.14) 

It is clear that the shocks are still undistorted at time t = 0, so that their inclina- 
tions are 8, = 8, = 0. The Mach numbers of the initial transmitted shocks must 
then be in the inverse ratio of the sound speeds in their respective media. The con- 
dition is clearly overly restrictive. In the general case, the shocks will not move 
together at t = 0. This singularity, which is purely mathematical in nature, must 
be smoothed out in the shortest possible time interval, so that the velocities will 
be equal at all subsequent surface points. 

With the physical condition ym = 0 at interface, Eqs. (4.8) to (4.13) can be 
rewritten: 

(i) along C- characteristics as 

--yI = P&m - t,) (4.15) 

XUI - XI = Pz-(fm - hl (4.16) 

e m - Or = (MIII, - Md/N-- (4.17) 

(ii) along C+ characteristics as 

-351 = h+bI - 4*) (4.18) 

xm - XII = Bz+(h* - hd (4.19) 

&II, - 41 = -+%I, - &)I~+. (4.20) 

where subscripts u and 2 denote the quantities in the upper and lower media, 
respectively. 

From Eqs. (4.16) and (4.19) with x1 = xn = tr = tn = 0, we obtain 

P,-- = P,+. (4.21) 

The functions ‘P’, as defined earlier, depend on Mach number M and inclination 0. 
Eqs. (4.14), (4.17), (4.20), and (4.21) may then be solved simultaneously for the 

fottr unknowns MIIIl , hr. , ezuw , 8 m, at the new surface point III. Having deter- 
mined in this way the hodograph characteristics, the physical characteristics are 
calculated by specifying time trII at which the shock reaches the particular point 
III on the undisturbed surface. Equations (4.16) and (4.19) then serve to determine 
the position of the surface point III. 
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The procedure for calculating subsequent surface points must be made more 
general. 

One uses values of points I and II lying on the previous shock front (See Fig. 4.3). 
These points must be chosen so that the characteristic lines through them will 
intersect at a common point on the undistrubed free surface at a prespecified time. 
The procedure is necessarily iterative, since, for the general surface point, it is not 
possible to decouple the physical and hodograph characteristics from one another. 

FIG. 4.3. Physical characteristics for a general surface point. 

One chooses as points I and II, two points previously computed on the last 
shock front. The Eq. (4.14) for equality of velocity at the free surface, along with 
the two hodograph characteristic Eqs. (4.17) and (4.20) provide three relations for 
the four unknowns M, , ME , 6, , and e1 at point III. The remaining relation must 
come from the physical characteristics, which depend through the functions P upon 
the hodograph characteristics. 

In this case, the physical and hodograph characteristics cannot be uncoupled 
from each other, due to the necessity of using averaged quantities along the charac- 
teristics, even for the first iteration. For even the smallest time steps there will be 
in general a significant difference between the Mach number at points I and II and 
at the corresponding point III above and below the interface, respectively, unless 
the two media are very similar in density and specific heat ratio. 

The hodograph characteristics are determined approximately by estimating 
A4, or ikfl at point III (the position of which is not yet known). Equations (4.17), 
(4.20), and (4.21) are sufficient to solve for the remaining variables 0, , 8, and the 
other Mach number M nr. The functions P may then be computed. 

The value of time 1111 at the new surface point is specified. Then, using the pre- 
viously chosen values for points I and II, Equations (4.15) and (4.18), describing 
the physical characteristics in terms of the y-coordinate, will yield two values of 
the time tin which may differ from the pre-selected value. Use this pre-selected 
value of tm in Eqs. (4.15) and (4.18), new values of y are determined for adjusted 
points I and II along the previous shock front. Corresponding values of M, 8, t 
and x are obtained at these points I and II by interpolation along the shock front 
(see Fig. 4.4). 

The solution of the three hodograph equations is repeated with a new estimate 
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FIG. 4.4. Modification of data points I and II. 

for M,, or h4i. After two or three iterations it is found that all conditions can be 
made compatible at the free surface. The coordinate xIII is found to agree to an 
accuracy of 0.1 y0 as calculated along either the C+ or C- characteristics from 
Eqs. (4.19) and (4.16), respectively. 

4.2. Calculation of Interior Points 

The computation of flow at points away from the free surface is considerably 
simpler. Here the hodograph characteristics, are only slightly coupled to the 
physical characteristics through the functions N which must be averaged along 
the Cf and C- characteristic directions. At the interior points, the time at point III 
is chosen equal to that for the corresponding shock front as computed at the free 
surface. In this way, the subsequent plotting of the shock front is facilitated. 

For the first approximation, the functions N are evaluated for the known 
properties at points I, II only. Equations (4.17) and (4.20) may then be solved 
simultaneously for Mm and 0,,, . The functions P are computed from Eqs. (4.4) 
to (4.7) and the position (x III , J& of point III determined directly from C+ 
characteristics (4.11) and (4.12) for the chosen time tm . Equations (4.8) or (4.9) 
may provide an independent determination of 2 m along the C- characteristic. If 
these two values of tm are not identical, then the data point farther from the free 
surface (point I in the upper medium or point II in the lower medium) is adjusted 
along the shock front and the computation repeated until the two values of tin 
approach one another. Three iterations have been found sufficient. 

The calculation of interior points is continued up to the boundary with the 
uniform region. In the uniform region convergence is immediate, thus signalling 
the completion of the calculations for that particular time fIrI . 

4.3. Location of the Shock Front 

The procedure described for the calculation of M, 8, x, y for selected time inter- 
vals was developed specifically with a view to facilitating the task of plotting 
successive shock positions. 

The shock front is in fact a locus of constant time, and this fact is used to connect 
all points corresponding to a particular arrival time of the shock wave. 

An alternate and considerably more laborious method of plotting the shock 
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profile would consist of tracing a smooth curve through points whose tangent 
directions en, are known. The first method was chosen as it avoids the necessity of 
a massive number of interpolations which would be required to locate a particular 
shock front, particularly in sensitive regions adjoining the uniform shock, where 
shock curvature changes rapidly. An independent check is still available by 
comparing selected points using both methods described above. 

4.4. Wave Pattern at the Free Surface 

The slopes and strengths of the diffracted shock fronts have now been deter- 
mined on each side of the free surface. It remains to ensure that the free surface 
boundary conditions, i.e., continuity of pressure and normal particle velocity, are 
satisfied. This will not be the case unless a wave system is introduced behind the 
shock front. The primary question is that of determining which combination of 
compression and expansion waves is necessary. The problem has been studied in 
great detail by Henderson ([9], [IO], [1 1 J) in a series of articles dealing with shock 
refraction at gas interfaces. In these works, the flow is mapped simultaneously in 
the physical and hodograph planes. A particular wave pattern is deduced from a 
continuous evolution from a known pattern, either by numerical calculation, or 
graphically by gradual displacement of one shock polar representing the wave 
system in the upper medium relative to the corresponding shock polar in the lower 
medium. Some experimental work by Jahn [12] in a shock tube containing two 
gases separated by a very thin membrane was used as a basis of comparison. The 
methods described in these papers have the potential of systematic application to 
the present problem for all combinations of fluids. However, for the three fluid 

FIG. 4.5. Coordinate system tied in moving shock. 
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combinations considered here, it was found after a few trials with various wave 
patterns that the conditions of continuity of pressure and velocity at the free sur- 
face could be satisfied simultaneously by introducing local expansion fans in both 
the upper and lower media immediately behind the diffracted shock front. 

The flow field near the free surface is calculated in terms of a coordinate system 
(2, y’) moving with the intersection point of the diffracted shock with the interface 
(Fig. 4.5). 

The governing equations of fluid motion are 

a(P/P? 
atfUax 

8(P/PY) + u XP/PV) _ 0. 
ay 

The first two equations represent conservation of momentum, the third conserva- 
tion of mass, and the fourth the conservation of entropy along a streamline behind 
the shock front. 

In terms of the moving coordinate system, these become 

(4.23) 

Since no fundamental length or time parameter enters the problem, the equations 
may be expressed in terms of similarity variables 

(4.24) 
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which reduces the problem to a quasi-steady two-dimensional form. The dependent 
variables are expressed in dimensionless form as: 

u’ , 
u=---; 

u Qo 
i;=$ 

P 

p=-; 
p=*, 

(4.25) 

(4.26) 

The transformation formulae from the moving frame (x’, y’, t) to the similarity 
coordinates (Z, J) are 

a (X + SJ a 
at=- t 

y a --__ 
ax t ay 

a 1 a 
z=-- u8,t a2 (4.27) 

Using relations (4.24) to (4.27), and omitting the bar superscripts, Equations (4.23) 
reduce to 

= Ua [ aP 
(x + Xs) z + Y ay ap-(u.+u)&u~] 

where a is the sound speed. 
The equations are now transformed to polar coordinates (r, 4) about the origin 

0’ fixed in the shock. The angle 4 is measured anticlockwise from the positive y 
axis, so that 

x = -r sin 4, y = r cos +, 4 = tan-‘(--x/y). 
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Then derivatives transform as 

a 1 -= r (r sin I# $ + cos 4 “) -- 
ax a4 

a -=- 
ay 

f(rcosQ$-sinQ$). 

(4.29) 

The limiting form of the Eqs. (4.28) under the transformation (4.29) as r -+ 0; 
i.e., in the immediate neighborhood of the shock front-free surface intersection, is 

p([xs - (24, + u)] cos 4 - u sin $} * = cos 4 * 
d$ 4 

P{h - (24, + u)] cos C# - 2, sin c$} * = sin 4 * 
d4 4 

&h - (us + u)] cos + - u sin #} -$- = p (cos 9% -$ + sin C$ -$) (4.30) 

{ix* - (24, + u)] cos + - u sin 4) * 
d4 

= a*{[xll - (24, + u)] cos 4 - u sin $} $ . 

Equations (4.30) are integrated numerically, starting from the shock front and 
progressing towards the free surface in both the upper and lower media. The 
wave pattern corresponds to two expansion fans. The tails of these fans are chosen 
specifically to match simultaneously the pressure and normal particle velocity. In 
this wave the slope of the disturbed interface behind the shock front is determined. 

4.5. Shape of the Head Characteristics 

As the shock front sweeps along the interface, the fluid pressure will rise suddenly. 
Upon the passage of the shock through each point on the free surface, that point 
becomes a source of an expansion wave which spreads out into the uniform flow 
region, carrying the first message of the interface disturbance. These waves form 
an envelope which will be termed the head characteristic. The equation of this 
envelope may be determined from an examination of the general flow equations 
(4.29) expressed in a reference frame moving with the shock front. 

From the calculations for the shock shape, it was observed that the velocity us 
of the shock along the free surface was nearly constant (Fig. 5.6). This information 
may be used to simplify the governing equations, since, if u, = const, then 

x, = u,t 
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and in dimensionless variables 

X8 us - X,y--&=~Iu*. 

Equations (4.29) reduce to 

(x - u) g + (y - 0) -g = ; -g = Kypy-a g 

(x - u) - ii + (y 
~,av~Iap=Kypy-L aP 

ay P aY aY 

(x - 4 2 + (Y -“)+g+$) 

(4.31) 

wherep = Kpv has been used to eliminate the pressure in favor of the density. The 
characteristics of this homogeneous set of equations are independent of velocity 
and density and are represented by 

dy 
dx= (x 

ya - aa 
- u) y f a[(x - 24)” + ya - aall’a ’ 

(4.33) 

Equations (4.33) have been integrated numerically, with initial conditions being 
those on the shock front at the boundary between the diffracted and uniform 
segments of the shock. 

The characteristics were found to be very nearly straight lines. The time interval 
between the passage of the shock and the arrival of the head chara&ristic repre- 
sents the period during which a fluid particle is subjected to the full pressure behind 
the shock front. Upon the arrival of the characteristic, the pressure begins to fall 
toward its original level. 

v. bWLlS AND DISCUSSION 

Computations have been completed for three cases, in which the difference in 
initial shock velocities between the upper and lower media varied between 8 %, 
22 %, and 26 %. The results are qualitatively similar over this range and will be 
discussed collectively in terms of the 26 % case. 

The initial conditions are shown in Fig. 5.1 in which are represented the initial 
uniform shock front for t < 0 and the uniform transmitted shocks in the upper 
and lower media for t = 0. Waves re&cted into the region x < 0 will not influence 
the propagation and local diffraction of the transmitted shock waves. 



PROPAGATION OF A SHOCK WAVE 433 

t=o 

S. 
1 

yi = 1.67 

pi = 0.01114 
(lb/i+) 

pi = 2160 
(1b/ft2) 

Mi = 3. 

ai = 3225. 8 
(fpd 

S, h 
I ?I 

= 1.67 

c 
ptu = 0.11135 

(lb/ft3) 

pt 
= 2160 

u Ob/ft’) 

Mt 
= 4.4453 

” 

=t 
= 1020.3 

u (fps) 

us 
= 4535.6 

” (fPS) 

S 
‘1 

I J=1.33 
3 

t 

p. = 0.04475 
fe (1b/ft3) 

Pt 
= 2160 

a (lb/ft2) 

I,4 
‘1 

= 3.9623 

I 
at = 1439.5 

I (fPS) 

u = 5703.9 
“&? (4s) 

Fb. 5.1. Initial and transmitted shock wave at time t = 0 (26 % difference in shock velocities). 

The shock shapes are plotted in the physical plane in Fig. 5.2, In all three cases, 
the shock fronts are seen to bend markedly at the boundary between the uniform 
and disturbed flow regions and at the free surface y = 0. The portions of the 
d&x&d shock front between these regions are almost plane and uniform. In 
addition, the surfaces separating the uniform and disturbed flow regions are very 
nearly plane, suggesting a self-similar property of the flow, which one would 
expect on the basis of dimensional analysis. Since no length or time scale may be 
formed by any combination of the input parameters, the solution may be shown 
to depend not on x, y, t separately, but rather on similarity variables proportional 
to (xl& u/o. 

When the shock profiles are replotted in terms of the new variables, they are 
found in Fig. 5.3 to fall very nearly onto one universal curve. In other words, the 
shock shapes are a&e, their shape remains unchanged, and only their scale varies 
in time. It will be noted however that the shock pro&s corresponding to earlier 
times t = 2.3.4 x 10-’ seconds depart most from this common curve, indicating 
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FIG. 5.2. The shock shape in physical coordinates (x, y) (26 % difference in shock velocities). 

that a self-similar solution is not obtained immediately from t = 0. Fig. 5.4 shows 
more details of the approach to similarity for early times. 

An estimate of the length of the transition period to self-similar behavior is 
obtained most effectively through a plot of the boundary of the disturbed region 
as shown in Fig. 5.5. 

Straight lines in the physical plane must correspond to lines of constant y/t in the 
similarity plane, since lines of constant y/x imply lines of constant y/t, x/t, where 
time t plays the rble of a parameter. There appears to be an adjustment period of 
about 12 x 1O-4 seconds, the delay being due to smoothing of the mathematical 
singularity at the free surface at time t = 0. 

The shock velocity at the free surface (component directed along the undisturbed 
free surface) is plotted in Fig. 5.6. 
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The shock front sweeps over the free surface at velocities which vary in a narrow 
band of only f0.5 %. 

The horizontal components of fluid velocity behind the shock front are plotted 
in Figure 5.7. Fluid velocities are very nearly constant, again confirming that the 
diffracted portions of the shock front between the free surface and the undisturbed 
boundary are almost uniform. The vertical components of fluid velocity are shown 
in Figure 5.8. At the free surface y = 0, the boundary conditions require that the 
normal components of velocity be continuous. This will be achieved physically 
through a pair of expansion fans immediately behind the upper and lower shocks 
at the free surface, without influencing significantly the velocity distributions on 
either side of the free surface. 

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 
y/t x IO’ fpr 

FIG. 5.7. The horizontal component of fluid velocity behind the shock front in terms of 
similarity variable of y/t (26 % difference in shock velocities). 

In the same manner, the pressure distributions behind the shock front, plotted 
in Figure 5.9, will be made continuous at y = 0 by the insertion of appropriate 
expansion fans. 

The density distribution along the shock front, shown in Fig. 5.10, is uniform 
except for rapid changes occuring at the free surface and in the region where the 
difEacted portion of the shock merges into the uniform shock front. 

The variation of the pressure, velocity, and density behind the shock front as it 
passes across the free surface (u = 0) is determined from the detailed analysis of 
the flow patterns behind the shock described in Section 4.4. The results of the 
matching procedure are shown in Fig. 5.11. The pressure variation and streamline 
direction at each point in the expansion in the upper and lower media are plotted 
as functions of angle. The solution is shown by the dashed lines in terms of the 
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unique combination of expansion fan angles which permit equality of pressures 
and streamline directions in both fluids. 

The head characteristics, representing the first waves penetrating into the uni- 
form region behind the undisturbed shock, are plotted in Fig. 5.12. They appear 
very nearly as plane reflected waves in the vicinity of the shock front. 
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FIG. 5.8. The vertical component of fluid velocity behind the shock front in terms of similarity 
variable of y/t (26 ‘A difference in shock velocities). 
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Fro. 5.12. Head characteristica in vicini@ of shock front. 

The accuracy of the method has been examined by Chisnell for converging 
cylindrical and spherical shocks and by Bird [I] for the simple problem of a plane 
shock front moving into a stratified medium whose layers run parallel to the inci- 
dent shock. In these cases no shock di@action occurs. Chisnell found uncamdly 
high accuracy when compared with the similarity solutions of Guderley [S]. Bird 
compared the ChisnelLWhitham method with a method of chamcte&tics solution 
for the plane shock problem, and found that highest accuracy was obtained for 
combinations of weak shock waves and favorable (positive) density pro&s in a 
gas with a high ratio of specitic heats. It is not clear that specitic conclusions may 
be extrapolated to the present more general problem. Nonetheless the study points 
out the importance of the effect of wave reflection far downstream on the evolution 
of the shock front. 

The calculations show that the complete flow field may be determined by these 
methods for di&rences in shock velocities up to about 30 %. For greater differ- 
enceqaswould surely be the case for blast waves at an air-water interface, it becomes 
apparent that the reflected wave pattern behind the shock at the fffe surface takes 
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on increasing importance, to the point that the basic assumptions inherent in 
Whitham’s method preclude further solutions in the neighborhood of the interface. 
When this occurs, the slopes and strengths of the shock fronts must be determined 
simultaneously with the wave pattern behind the shock front. 

VI. CONCLU~I~NS 

The method of characteristics based on Whitham’s technique has been applied 
for the first time to the interaction of shock waves with a free surface. Shock 
diffraction may be computed for waves of arbitrary strength, provided that the dis- 
similarity between the two media adjoining the free surface does not result in 
shock velocities at y = fao which differ by more than 30 %. Greater degrees of 
shock diffraction will be accompanied by reflected and re-reflected waves which 
may overtake the shock front. These effects have not been included in Whitham’s 
technique in which changes in shock Mach number are related only to local 
variations in ray tube cross-sectional area. 

The problem considered is known to possess the property of self-similarity. The 
numerical calculations indicate a rapid approach to self-similar profiles in a time 
interval of about 1.2 milliseconds, the delay being due to the initial mathematical 
singularity at the free surface. 

The technique is directly applicable to shock wave diffraction at an ocean surface 
and will be extended in future work to include the effects of strat&ation on either 
side of the interface, as a means of investigating shock wave propagation over large 
depths in the oceans and upper atmosphere. 
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